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A single stationary specification of anisotropy often cannot capture the complexities of a geologic site.  In 
this situation, the anisotropy can be varied locally.  Directions of continuity and/or variogram parameters 
can change depending on location within the domain being modeled.  Kriging equations could easily be 
developed to use a local anisotropy specification within the Kriging neighborhood; however, this approach 
does not account for variation in anisotropy within the Kriging neighborhood.  This paper presents an 
algorithm to determine the optimum path through a field of local anisotropy parameters that results in the 
highest covariance.  Using the optimum path between two points increases covariance and generates 
estimates with lower variance.  Although CPU intensive, the methodology can be implemented to 
reproduce complex curvilinear structures in Kriged or simulated maps.  Synthetic examples will highlight 
the ability of this methodology to reproduce complex features that would otherwise be difficult to generate 
with traditional Kriging or sequential Gaussian simulation. 

Introduction 

A decision of stationarity is required for geostatistical techniques.  If there are drastic differences in 
statistical parameters between areas of a geological site it could be subdivided into independent domains, 
each modeled separately.  Occasionally a domain is further subdivided by rock-type or facies if such a 
subdivision is deemed important for the study objectives.  In this case, geostatistical modeling is done on a 
by-facies basis.  We will present a technique to explicitly deal with multiple directions of continuity within 
a single domain. 

Inherent features within geological formations can be exploited to increase the accuracy of modeling 
including anisotropy, range of correlation, secondary variables, and others.  If these characteristics are well 
understood, they can be transferred into modeling to improve performance.  Consider a vein type deposit 
where the strikes of the veins are known and found to be quite variable over the deposit.  In this situation it 
would be difficult to select a single variogram with one major direction of anisotropy.  We propose to 
utilize a locally varying variogram in geostatistical modeling.  At every location in the model a different 
variogram is selected by the modeler and Kriging is modified to use a different variogram.   

In conventional geostatistical modeling, the relationship between any two locations in space is 
characterized by a variogram model.  Angles and ranges define the anisotropy present in the variogram and 
it is applied in a stationary manner; that is, we use the same model for all locations within a spatial domain 
of interest.  In this case, the straight-line covariance between any two locations in space is the maximum 
attainable covariance.  Locally varying anisotropy (LVA) will be defined as a consistent variogram model 
in terms of nested structures and variance contributions, but with spatially varying range and direction 
parameters.  In most cases the straight-line covariance will no longer be the maximum.   

Some work has been done with locally varying variograms but it has not been fully developed.  Often the 
variogram for the location being estimated (gray cell in Figure 1) is selected to be locally representative and 
the straight line path between the estimation location and surrounding data is used.  Partitioning the path 
between the estimation location and surrounding data and calculating the anisotropic distance for every cell 
that the path intersects would give a more accurate measure of the covariance between points.  Moreover, a 
non-linear path between points may result in a higher covariance when anisotropy is considered (dashed 
path in Figure 1). 
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This paper will discuss the optimization of the path between two points in the presence of a LVA field.  
The following paper, “Kriging and Simulation in the Presence of Locally Varying Anisotropy” will discuss 
the implementation of this algorithm in Kriging and simulation. 

Background 

An optimization algorithm will be developed for minimizing the anisotropic distance, which is equivalent 
to maximizing covariance, between two points in space when confronted with LVA.  An LVA field is 
parameterized as a regular grid, with each cell characterized by three angles and two anisotropy ratios.  
Angles measure strike, α, dip, β, and plunge, γ, of the variogram ellipsoid and ratios, r1 and r2, are the minor 
and vertical variogram ranges scaled by the maximum range.  All five parameters can be combined into an 
anisotropic rotation matrix R in Equation 1 that is used in calculating the distance along a line within a 
particular block of an LVA field.  Within the same LVA block the squared distance between two points, p0 
and p1, is calculated by Equation 2. 
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Previous work 

To the authors’ knowledge, all past work has used the LVA for a local search only (Xu, 1996; Sullivan, 
Satchwell and Ferrax, 2007; Deutsch and Lewis 1992).  In this framework, when determining the Kriging 
weights the variogram of the estimation location is applied to its local neighborhood.  The variogram is 
assumed constant for each Kriging neighborhood.  Consider estimating at the gray location in Figure 2; the 
north-west direction would be applied to the local area and the covariance between points would be 
calculated with anisotropy in this direction.  This is an exaggerated example where the LVA field at the 
estimation location is drastically different than the surrounding LVA, but it highlights the limitations of 
applying the LVA field in this way.  If the LVA changes smoothly over the field and changes are observed 
beyond the range of the variogram, considering a constant local anisotropy in each Kriging neighborhood 
may be reasonable. 

Stroet and Snepvangers (2005) have recently proposed a variant of Kriging where the local anisotropy is 
automatically calculated from the available data.  Using locally varying anisotropy they are able to 
accurately reproduce curvilinear structures in both indicator and continuous variables using an iterative 
image analysis technique.  Unfortunately, this technique is currently limited to 2D and requires sufficient 
data to directly infer the varying anisotropy.  If the data does not show all the curvilinear structures, the 
method is not successful.  Often times in petroleum and mining applications the data does not show the 
curvilinear features because of large sample spacing but it is known qualitatively, based on expert 
knowledge, that the features exist.  In this case, our proposed methodology can be used to reproduce the 
desired features. 

Methodology 

The domain that will be estimated must be exhaustively filled with range and direction parameters that 
define the variogram at every location.  Currently, the implementation of this technique requires that the 
LVA field be provided by the user in a regular grid.  It would be difficult to generate the LVA field from 
data and often the geological understanding of the deposit is used to determine the directions of continuity, 
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i.e. the strike of veins, directions of channels etc.  This section will discuss how the minimum distance 
between points is determined with the user supplied LVA field. 

Calculating the distance between points 

The use of R in Equation 2 provides the anisotropic distance.  Now consider the same two points but 
separated by several LVA blocks having different anisotropy parameters; the equation for the squared 
distance between these two points can be developed (Fig. 3).  The line that runs between two points can be 
split into segments, each within a specific LVA block.  The line from p0 to p1 can be defined: 
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where t is a parameter defining any point along the vector p1-p0.  Assuming the LVA field is an axis 
aligned regular grid, we know all of the x, y and z intersection points between p0 and p1.  These can be used 
in Equation 3 to calculate all values of t for which there is an intersection point.  Each segment then 
belongs to a single LVA block and the distance p1-p0 is the sum of the lengths of those segments.  For m 
segments between two points, the squared distance is calculated by Equation 4. 
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In Equation 4, j represents a segment within a specific LVA block associated with the rotation matrix Rj.  
To find the minimum squared distance between p0 and p1, the path must be altered.  Control-points are 
added to the path (Fig. 3).  For n control-points, Equation 4 can be re-written as Equation 5.  The goal is to 
find the positions for the control-points such that Equation 5 is minimal.  Minimization of the distance 
between two points can be accomplished with the guarded Newton method (Boyd and Vandenberghe, 
2004).  This method requires the Jacobian and Hessian matrices, which are defined by Equations 6 and 7 
below. 
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In the guarded Newton method, the Jacobian and Hessian are used to calculate a Newton step, which is a 
vector that describes the spatial translation to be applied to the control-points.  Calculation of the Newton 
step (∆v) for iteration k is done by solving the system in Equation 8.  A line search is used to calculate the 
magnitude (α) of the step taken in Equation 9.  Implementing a line search prevents translation of control-
points into undesirable configurations, such as intersecting loops, or into positions beyond the LVA field.  
More control points are added and translated according to the Newton step and the process repeats until no 
improvement in distance can be attained. 

 H J⋅Δ = −v  (8) 

 1k k kα+ = + ⋅ Δv v v  (9) 

The number of control points must account for the resolution of the regular grid over which the LVA field 
is defined.  For a given resolution, two extreme cases may arise: (1) anisotropy is nearly constant 
everywhere in the field or (2) anisotropy is highly variable in orientation and range.  In the first case, the 
minimum anisotropic distance could be found with very few control-points, possibly with only one.  
However, the second scenario may demand a control-point spacing equivalent to the LVA grid spacing. 

To account for the range of LVA scenarios that exist between the two extreme cases, control-points are 
inserted exponentially as 2x from one to a maximum, which is defined as the number of LVA blocks 
intersected between any two locations of interest.  After each set of control-points are added, a new solution 
is found.  Control-points are not added if the decrease in distance is less than ε (~square-root of machine 
epsilon). 

Minimizing the anisotropic distance between any two locations u and v in an LVA field is accomplished 
with the following algorithm: 

1. Calculate initial distance between u and v, D(u,v). 

2. Set iteration k=0, change in distance ΔD=Dk–Dk-1, and the number of control-points Ncp=0. 

3. While ΔD(u,v) > ε and Ncp < maxcp: 

i. Insert 2k control-points, where k is the current iteration, Ncp=Ncp+2k. 

ii. Calculate Jacobian, Hessian and Newton step for all control-points. 

iii. Calculate step parameter α using golden section search. 

iv. Apply the Newton step. 

v. Increment k. 

Examples 

Example 1 will highlight how the optimum non-linear path between two points changes as the LVA field 
changes.  Example 2 will show the optimized paths between points in a geospatial setting where two data 
would be used to estimate at an unknown location. 

Example 1 

Consider the two points and LVA field in Figure 4.  The LVA field is defined by the arrows shown on the 
plot and the different paths correspond to different anisotropy ratios.  If the anisotropy ratio is 1:1 there is 
no benefit in altering the path and the straight-line path results in the maximum covariance.  As the 
anisotropy ratio increases it becomes beneficial to consider the non-linear paths shown.  Higher anisotropy 
ratios will result in paths that deviate further from the straight-line path.  Table 1 shows the reduction in 
anisotropic distance accomplished with optimization.  This will result in a higher and more realistic 
covariance between points. 
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Table 1: Differences in the optimized and straight-line paths between data in Figure 4. 

Anisotropy hStraight-line  hOptimized 
1:1 8.7 8.7 

1.33:1 10.86 10.82 
2:1 15.34 15.31 
4:1 29.25 29.21 
5:1 36.32 31.42 
10:1 71.94 59.66 
20:1 143.52 121.69 

1000:1 7170 6147 

Example 2 

Consider the data configuration and LVA fields in Figure 5.  For Case 1 we will consider that the straight-
line path is used between the points; however, the LVA field is used to calculate the covariance between 
points (d1+d2+d3, Fig 5B).  For Case 2 we will consider optimizing the path between points (d1+d2+d3, Fig 
5A).  For both cases, the anisotropy ratio outside the channel will be 1:1 and inside the channel will be 
10:1.  Table 2shows all the distances between points for both cases; there is a significant decrease in the 
anisotropic distance when the nonlinear path is used.  In Kriging this will transfer to a larger covariance 
between points and will result in better estimates. 

Table 2: Anisotropic distances between points for Example 2. 

 Case 1 
hstraight-line 

Case 2 
hoptimized 

p1 – p2 31.6 29.3 
p1 – p3 60.7 50.8 
p1 – p4 40.3 20.8 
p2 – p3 7.8 7.4 
p2 – p4 21.6 13.2 
p3 – p4 12.8 6.2 

Conclusions and Future Work 

There are many geological sites that do not conform to the common assumption of stationarity.  There are 
many solutions to this problem such as: trend modeling; domaining the data; facies modeling; using 
techniques that are not as dependant on the assumption of stationarity such as ordinary Kriging; or using an 
LVA model.  Past work with LVA models has assumed that the local variogram at an estimation location 
applies to the neighborhood of that location.  In order to depart from this assumption and consider that the 
LVA field varies between points, an algorithm to calculate the shortest non-linear anisotropic path between 
points in required.  This is the algorithm that has been presented in this paper.  The following paper 
“Kriging and Simulation in the Presence of Locally Varying Anisotropy” will implement this algorithm in 
Kriging and simulation. 

There are two major areas of future work for this algorithm.  First, other optimization techniques and 
approaches to finding the minimum anisotropic distance should be researched.  The guarded Newton 
method implemented does not find the global minimum.  This implies that after optimization, there may be 
a different path that results in a shorter distance between points.  This is a common optimization problem 
and there are a number of solutions; the most common being to use a random restart.  This would involve 
starting with a path other than the straight-line path between points.  The drawback to this method is the 
added CPU time required to optimize the new starting path.  The second area of future work is to improve 
the CPU speed of the algorithm.  As will be discussed in “Kriging and Simulation in the Presence of 
Locally Varying Anisotropy” the CPU time of this algorithm becomes expensive. 
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Figure 1:  Calculating the true distance between the gray estimation location and a data point p1.  The 
dashed path shows the optimized path. 
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Figure 2:  An example LVA field with the major direction of continuity shown as arrows and data as 
circles.  Consider estimating the gray location without using the local change in anisotropy. 

 

 

 
Figure 3: Components of minimizing the anisotropic distance. 
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Figure 4: Optimized path between p1 and p2.  Different paths indicate different anisotropy ratios in the 
LVA field.  The major direction of continuity for each row of cells is shown by the arrows to the right of 
the figure. 

 

 

 

 

 
Figure 5: Location of data for Example 2.  The background is colored based on the major direction of 
continuity of the LVA field and the anisotropy ratio in the channel is 10:1.  Sample calculation: distance 
between points 1 and 2 is the sum of the segments d1+d2+d3. 
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